
Resource Sharing Beyond FQ: 35K Users at 100Gbps
Dávid Kis, Gergő Gombos, Sándor Laki

ELTE Eötvös Loránd University
Budapest, Hungary
lakis@inf.elte.hu

Szilveszter Nádas
Ericsson Research
Budapest, Hungary

szilveszter.nadas@ericsson.com

ABSTRACT
Core-stateless resource sharing solutions implemented in P4 hard-
ware data planes have been proposed in the past few years. They
share the idea of tagging packets with special values at the network
edge that are then solely used for deciding how to handle packets
in the network in case of congestion. Though the scheduler of our
Core-Stateless Active Queue management (CSAQM) was imple-
mented in P4 and was evaluated on Intel Tofino ASIC, the packet
marker have only had a DPDK-based software implementation so
far. In this demo, we present the full data plane implementation of
CSAQM. Both packet marking and packet scheduling are executed
by an Intel Tofino ASIC. We demonstrate the scalability of our im-
plementation by showing policy enforcement among up to 35000
subscribers at a 100 Gbps bottleneck using only a single queue. In
addition, we also present the resource sharing and isolation proper-
ties of CSAQM between flows with different rate control strategies,
resulting in flow-specific congestion signals (drop probabilities) by
design.

CCS CONCEPTS
• Networks → Packet scheduling; Network resources alloca-
tion.

KEYWORDS
Resource Sharing, QoS, Congestion Control, Core-Stateless

ACM Reference Format:
Dávid Kis, Gergő Gombos, Sándor Laki and Szilveszter Nádas . 2022. Re-
source Sharing Beyond FQ: 35K Users at 100Gbps. In ACM SIGCOMM 2022
Conference (SIGCOMM ’22 Demos and Posters), August 22–26, 2022, Amster-
dam, Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3546037.3546045

1 INTRODUCTION
The increasing broadband access speeds of mobile and fixed net-
works lead to new challenges in the transport Access-Aggregation
Network (AAN). The AAN may itself become a bottleneck of trans-
mission instead of access links. When a high-speed link is shared
among thousands of subscribers without any isolation mechanisms,
the resulting resource sharing depends on the number of flows of
each subscriber and the congestion controls used. Fair Queueing
(FQ) scheduler may be used to enforce fairness among the users [7]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9434-5/22/08.
https://doi.org/10.1145/3546037.3546045

in theory, but it does not scale as the number of subscribers grow
as it requires many queues to be maintained.

Core-Stateless Active Queue management (CSAQM) [5] and
other recent proposals [8] exploit the benefits of programmable
data planes to expand traffic management capabilities. In CSAQM,
each packet is tagged at the edge of the network with a Packet
Value (PV). The PVs are then used as an incentive in the scheduler
of network nodes to decide which packet to forward, drop or ECN
mark. Resource sharing policies are solely defined by the packet
marking strategy, which is described by bandwidth-function-like
policies [4]. A key advantage of this solution is that new policies
can be introduced by only re-configuring the packet marking at the
network edge, keeping the schedulers unchanged. We have already
demonstrated that a CSAQM scheduler can be implemented on P4-
programmable devices [1, 2], but the packet marking component
has only been implemented in a DPDK-based software till now. Its
P4 implementation would further simplify the deployment.

2 DATA PLANE DESIGN FOR SCALABLE
PACKET MARKING

In CSAQM, the resource sharing policy to be applied for each traffic
aggregate is implemented by a dedicated packet marker instance.
Each such component continuously measures the arrival rate (𝑅 𝑗) of
𝑗 th traffic aggregate, chooses a sample between 0 and 𝑅 𝑗 uniformly
at random and applies the policy function 𝑣 (.) at this random value
to obtain a PV for tagging the packet [5]. Even though this is a
very simple mechanism, implementing it on a P4 programmable
ASIC is still challenging. While Tofino hardware allows generating
random integers between 0 and 2𝑛−1, converting them into a range
between 0 and an arbitrary integer value required some special
trick. Our simplified packet marking algorithm for Tofino ASIC
is depicted in Fig. 1. The packet processing pipeline starts with a
table responsible for maintaining subscriber rates and setting the
policy to be applied. This table matches on a subscriber identifier
(e.g., IPv4/IPv6 address) and each packet updates a rate measure-
ment instance 𝑅 implemented as a low-pass filter stateful object.
We assume that the policy function has an exponential decay and
thus an exponential binning of the throughput-axis can be used
to discretize this function. As shown in the figure, bin sizes are
equidistant on a logarithmic scale and each bin (e.g., Δ𝑖 from 𝑎𝑖−1

to 𝑎𝑖) represents a unique packet value-level marked with red lines.
To support this compact representation, we first convert rate 𝑅

to a bin index 𝑖 using a logarithm table. Table RateIndex applies
range matches on the subscriber’s rate 𝑅 and results in 𝑖 so that
𝑅 ∈ Δ𝑖 . The uniform random sample between 0 and 𝑅 is approxi-
mated with a logarithmization trick. We first take a random value
𝑟𝑛𝑑 from range 0 to 255 and then compute the bin index of 𝑟𝑛𝑑

255 ×𝑅,
using table RandomRateEstim. Instead of directly computing the
rate sample, we take the logarithm of it and offset the bin index

https://doi.org/10.1145/3546037.3546045
https://doi.org/10.1145/3546037.3546045
https://doi.org/10.1145/3546037.3546045

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands D. Kis, G. Gombos, S. Laki, Sz. Nádas

a1023 = max. per-flow rate

P
V

1023 log-log scale

0 a0

Throughput
0

a1 ai-1 ai a1022

Table SubscriberRate

subscriberID action

Key for
subsc. 42

R = UpdateRate(42)
set policyID

Key for
subsc. 94

R = UpdateRate(94)
set policyID

Table RateIndex

R in Δi action

0-10Kbps i = 0

Δ0 Δ1 Δi
Δ1023

10-20Kbps i = 44

… ...

98-100Gbps i = 1023

rnd = random(0,255)

Table RandomRateEstim

rnd action

0

1 rndbin = i |-| y(1)

… ...

255 rndbin = i |-| y(255)

 1023, if x=0
 y(x) =
 -loga(x/255), else

rndbin = i |-| y(0)

Table PolicyFunction

policyID,
rndbin

action

1, 0 pv = v1(arndbin)

... ...

12, 1023 pv = v12(arndbin)

PACKET

PACKET
PV TAG

R

Figure 1: Data Plane Design of Packet Marking

𝑖 accordingly, resulting in a random index 𝑟𝑛𝑑𝑏𝑖𝑛. The offset is
shown as 𝑦 (𝑥) which is precomputed and hard-coded in the table.
Finally, we determine the packet value to tag the packet by applying
table PolicyFunction that stores the discretized representations of
policy functions. The proposed design requires limited number of
per-subscriber stateful data plane resources and, with the current
prototype implementation, can scale up to 35K subscribers. This
limitation is caused by our preliminary rate measurement algorithm
that relies on an array of low-pass filter externs having as many
elements as the number of subscribers to be distinguished. This
step of our P4 pipeline is mapped to a single stage, reaching the
per-stage resource limit. However, scaling beyond 35K subscribers
is possible by optimizing the resource utilization of our pipeline
algorithm (e.g., mapping low-pass filter externs to more stages). We
considered typical policy functions and PV encoding schema dur-
ing the data plane design of our packet marker. For this case, apart
from the different rate measurement algorithms, the P4 pipeline is
equivalent to our previous DPDK implementation.

3 DEMO SCENARIOS
Our evaluation setup is depicted in Fig. 2. We perform CSAQM
packet marking in the data plane of a Tofino-based P4-switch.
Packet marking can be omitted for non-edge bottlenecks. The 100
Gbps bottleneck has been created by interconnecting two ports of
the switch. The bottleneck is managed by the CSAQM scheduler
that has both data and control plane components running on the
same P4-switch. Thousands of UDP flows emulating subscribers’
traffic are generated with the DPDK PktGen tool on a source con-
nected with two 100 Gbps links to the switch. The throughput of
these flows is measured using our DPDK-based collector program
on a sink machine connected with a single 100 Gbps link. The other
source and sink machines run iperf2 [6] to generate the traffic of
designated subscribers and are connected with a 40 Gbps link each.

DPDK
source

iPerf
source

iPerf
sink

DPDK
sink

Marker

AQM

40Gbps100Gbps100Gbps 40Gbps

100Gbps

100Gbps

Data Plane
Control Plane

P
4

 T
O

FI
N

O

Figure 2: Demo setup

Measurements are collected from both sink nodes and the P4-switch
and visualized on a Grafana-dashboard in real-time. Each user is
marked by a Silver or a Gold policy, which are configured to achieve
1:3.4 sharing between Silver and Gold users, resp.

Our demo video [3] covers the following four scenarios. 1) 10k
Gold and Silver subscribers: The DPDK source generates the
traffic of 8000 Silver users on one of the interfaces and 2000 Gold
users on the other, resulting in 200 Gbps load on the bottleneck.
The applied policies result in 21.8 and 6.4 Mbps average per-user
throughput for the two classes. The virtual queue of CSAQM dis-
cards 51.5% of the incoming packets according to the resource
sharing policy represented by the packet marking. This scenario
shows the resource sharing property of our packet marker and
scheduler in case of high, but stable traffic loads. 2) Designated
users with different demands:We add two Gold UDP flows (as
2 designated users) generated by iperf to the system, one send-
ing with 15 Mbps, the other with 50 Mbps. No packets of the 15
Mbps flow are lost, as the user’s demand is below its fair share (of
21.8 Mbps). The user with 50 Mbps traffic load experiences 58%
loss, which is higher than the average loss rate in the AQM, and
thereby it reaches the same throughput as other Gold subscribers.
This scenario demonstrates that users demanding less than their
fair share are not affected by other subscribers’ high loss rate. 3)
Designated users with congestion controlled flows: We add
10 Gold Cubic TCP flows to the mix, emulating 10 additional users
with congestion controlled flows. Their throughput is ≈ 18.5 Mbps,
somewhat below the UDP-based other Gold users. The packet loss
of these users is about 2%. We show that the congestion control of
a single TCP flow cannot perfectly utilize the Gold fair share. We
believe that the rate measurement algorithm can be further tuned
to optimize the TCP performance, which we leave for future work.
Rate measurement for the constant bitrate UDP traffic is naturally
much simpler. Our method results in traffic/congestion control-
specific loss rates, enabling the coexistence of even incompatible
rate control mechanisms in the same system. 4) Scaling up to 35k
subscribers: In this case, we only use our DPDK source to generate
the traffic of 7000 Gold and 28000 Silver users. The results show
that the algorithm still maintains the desired resource sharing even
at this scale.
Acknowledgement. S. Laki and G. Gombos thank the support
of the "Application Domain Specific Highly Reliable IT Solutions"
project that has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hun-
gary, financed under the Thematic Excellence Programme TKP2020-
NKA-06 (National Challenges Subprogramme) funding scheme. The
authors also thank the support of Ericsson.

Resource Sharing Beyond FQ: 35K Users at 100Gbps SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] Ferenc Fejes, Szilveszter Nádas, Gergő Gombos, and Sándor Laki. 2021. A Core-

Stateless L4S Scheduler for P4-enabled hardware switches with emulated HQoS.
In IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops
(INFOCOM Demo). IEEE, 1–2.

[2] Ferenc Fejes, Szilveszter Nádas, Gergő Gombos, and Sándor Laki. 2022. DeepQoS:
Core-Stateless Hierarchical QoS in Programmable Switches. IEEE Transactions on
Network and Service Management (2022).

[3] Dávid Kis, Gergő Gombos, Sándor Laki, and Szilveszter Nádas. 2022-05. Demo
video. https://www.youtube.com/watch?v=c0OWlsp6flg

[4] Alok Kumar, Sushant Jain, UdayNaik, Anand Raghuraman, Nikhil Kasinadhuni, En-
rique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-
Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin Vahdat. 2015.
BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Comput-
ing. In Proceedings of ACM Sigcomm (London, United Kingdom) (SIGCOMM ’15).

ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/2785956.2787478
[5] Sándor Laki, Szilveszter Nádas, Gergő Gombos, Ferenc Fejes, Péter Hudoba, Zoltán

Turányi, Zoltán Kiss, and Csaba Keszei. 2020. Core-Stateless ForwardingWith QoS
Revisited: DecouplingDelay and Bandwidth Requirements. IEEE/ACMTransactions
on Networking 29, 2 (2020), 503–516.

[6] Robert McMahon, Battu Kaushik, and Tim Auckland. 2005. Iperf: The TCP/UDP
bandwidth measurement tool. https://sourceforge.net/projects/iperf2/

[7] M. Shreedhar and George Varghese. 1995. Efficient Fair Queueing Using Deficit
Round Robin. In Proceedings of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (Cambridge, Massachusetts,
USA) (SIGCOMM ’95). Association for Computing Machinery, New York, NY, USA,
231–242. https://doi.org/10.1145/217382.217453

[8] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion Stoica, and Xin Jin. 2021.
Twenty Years After: Hierarchical Core-Stateless Fair Queueing. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX
Association, 29–45.

https://www.youtube.com/watch?v=c0OWlsp6flg
https://doi.org/10.1145/2785956.2787478
https://sourceforge.net/projects/iperf2/
https://doi.org/10.1145/217382.217453

	Abstract
	1 Introduction
	2 Data Plane Design for Scalable Packet Marking
	3 Demo Scenarios
	References

